In 2011 the authors of the L-BFGSB program published a correction and update to their 1995 code. The latter is the basis of the L-BFGS-B method of the optim()
function in base-R. The package lbfgsb3
wrapped the updated code using a .Fortran
call after removing a very large number of Fortran output statements. Matthew Fidler used this Fortran code and an Rcpp
interface to produce package lbfgsb3c
where the function lbfgsb3c()
returns an object similar to that of base-R optim()
and that of optimx::optimr()
. Subsequently, in a fine example of the collaborations that have made R so useful, we have merged the functionality of package lbfgsb3
into lbfgsb3c
, as explained in this vignette. Note that this document is intended primarily to document our efforts to check the differences in variants of the code rather than be expository.
lbfgsb3c
There is really only one optimizer function in the package, but it may be called by four (4) names:
lbfgsb3c()
uses Rcpp (Eddelbuettel (2013), Eddelbuettel and François (2011), Eddelbuettel and Balamuta (2017)) to streamline the call to the underlying Fortran. This is the base function used.lbfgsb3x()
is an alias of lbfgsb3c()
. We were using this name for a while, and have kept the alias to avoid having to edit test scripts.lbfgsb3
, which imitates a .Fortran
call of the compiled 2011 Fortran code. The object returned by this routine is NOT equivalent to the object returned by base-R optim()
or by optimx::optimr()
. Instead, it includes a structure info
which contains the detailed diagnostic information of the Fortran code. For most users, this is not of interest, and I only recommend use of this function for those needing to examine how the optimization has been carried out.lbfgsb3f()
is an alias of lbfsgb3()
.We recommend using the lbfsgb3c()
call for most uses.
# candlestick function
# J C Nash 2011-2-3
function(x,alpha=100){
cstick.f<-as.vector(x)
x<-crossprod(x)
r2<-as.double(r2+alpha/r2)
f<-return(f)
}
function(x,alpha=100){
cstick.g<-as.vector(x)
x<-as.numeric(crossprod(x))
r2<-2*x
g1<- (-alpha)*2*x/(r2*r2)
g2 <-as.double(g1+g2)
g<-return(g)
}library(lbfgsb3c)
2
nn <- c(10,10)
x0 <- c(1, 1)
lo <- c(10,10)
up <-print(x0)
## [1] 10 10
## c2o <- opm(x0, cstick.f, cstick.g, lower=lo, upper=up, method=meths, control=list(trace=0))
## print(summary(c2o, order=value))
lbfgsb3c(x0, cstick.f, cstick.g, lower=lo, upper=up)
c2l1 <- c2l1
## $par
## [1] 2.236068 2.236068
##
## $grad
## [1] -1.121272e-06 -1.121272e-06
##
## $value
## [1] 20
##
## $counts
## [1] 14 14
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
## meths <- c("L-BFGS-B", "lbfgsb3c", "Rvmmin", "Rcgmin", "Rtnmin")
## require(optimx)
## cstick2a <- opm(x0, cstick.f, cstick.g, method=meths, upper=up, lower=lo, control=list(kkt=FALSE))
## print(summary(cstick2a, par.select=1:2, order=value))
c(4, 4)
lo <-## c2ob <- opm(x0, cstick.f, cstick.g, lower=lo, upper=up, method=meths, control=list(trace=0))
## print(summary(c2ob, order=value))
lbfgsb3c(x0, cstick.f, cstick.g, lower=lo, upper=up)
c2l2 <- c2l2
## $par
## [1] 4 4
##
## $grad
## [1] 7.21875 7.21875
##
## $value
## [1] 35.125
##
## $counts
## [1] 2 2
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL"
## cstick2b <- opm(x0, cstick.f, cstick.g, method=meths, upper=up, lower=lo, control=list(kkt=FALSE))
## print(summary(cstick2b, par.select=1:2, order=value))
## nn <- 100
## x0 <- rep(10, nn)
## up <- rep(10, nn)
## lo <- rep(1e-4, nn)
## cco <- opm(x0, cstick.f, cstick.g, lower=lo, upper=up, method=meths, control=list(trace=0, kkt=FALSE))
## print(summary(cco, par.select=1:4, order=value))
# require(funconstrain) ## not in CRAN, so explicit inclusion of this function
# exrosen <- ex_rosen()
# exrosenf <- exrosen$fn
function (par) {
exrosenf <- length(par)
n <-if (n%%2 != 0) {
stop("Extended Rosenbrock: n must be even")
} 0
fsum <-for (i in 1:(n/2)) {
2 * i
p2 <- p2 - 1
p1 <- 10 * (par[p2] - par[p1]^2)
f_p1 <- 1 - par[p1]
f_p2 <- fsum + f_p1 * f_p1 + f_p2 * f_p2
fsum <-
}
fsum
}# exroseng <- exrosen$gr
function (par) {
exroseng <- length(par)
n <-if (n%%2 != 0) {
stop("Extended Rosenbrock: n must be even")
} rep(0, n)
grad <-for (i in 1:(n/2)) {
2 * i
p2 <- p2 - 1
p1 <- par[p1] * par[p1]
xx <- par[p2] - xx
yx <- 10 * yx
f_p1 <- 1 - par[p1]
f_p2 <- grad[p1] - 400 * par[p1] * yx - 2 * f_p2
grad[p1] <- grad[p2] + 200 * yx
grad[p2] <-
}
grad
}
function (n = 20) {
exrosenx0 <-if (n%%2 != 0) {
stop("Extended Rosenbrock: n must be even")
}rep(c(-1.2, 1), n/2)
}
require(lbfgsb3c)
## require(optimx)
## require(optimx)
for (n in seq(2,12, by=2)) {
cat("ex_rosen try for n=",n,"\n")
exrosenx0(n)
x0 <- rep(-1.5, n)
lo <- rep(3, n)
up <-print(x0)
cat("optim L-BFGS-B\n")
optim(x0, exrosenf, exroseng, lower=lo, upper=up, method="L-BFGS-B", control=list(trace=0))
eo <-print(eo)
cat("lbfgsb3c\n")
lbfgsb3c(x0, exrosenf, exroseng, lower=lo, upper=up, control=list(trace=0))
el <-print(el)
## erfg <- opm(x0, exrosenf, exroseng, method=meths, lower=lo, upper=up)
## print(summary(erfg, par.select=1:2, order=value))
}
## ex_rosen try for n= 2
## [1] -1.2 1.0
## optim L-BFGS-B
## $par
## [1] 1 1
##
## $value
## [1] 3.844416e-14
##
## $counts
## function gradient
## 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## lbfgsb3c
## $par
## [1] 1 1
##
## $grad
## [1] -8.65458e-07 6.26284e-07
##
## $value
## [1] 3.844419e-14
##
## $counts
## [1] 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
##
## ex_rosen try for n= 4
## [1] -1.2 1.0 -1.2 1.0
## optim L-BFGS-B
## $par
## [1] 1 1 1 1
##
## $value
## [1] 7.688835e-14
##
## $counts
## function gradient
## 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## lbfgsb3c
## $par
## [1] 1 1 1 1
##
## $grad
## [1] -8.65458e-07 6.26284e-07 -8.65458e-07 6.26284e-07
##
## $value
## [1] 7.688829e-14
##
## $counts
## [1] 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
##
## ex_rosen try for n= 6
## [1] -1.2 1.0 -1.2 1.0 -1.2 1.0
## optim L-BFGS-B
## $par
## [1] 1 1 1 1 1 1
##
## $value
## [1] 1.153325e-13
##
## $counts
## function gradient
## 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## lbfgsb3c
## $par
## [1] 1 1 1 1 1 1
##
## $grad
## [1] -8.654581e-07 6.262840e-07 -8.654581e-07 6.262840e-07 -8.654581e-07
## [6] 6.262840e-07
##
## $value
## [1] 1.153324e-13
##
## $counts
## [1] 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
##
## ex_rosen try for n= 8
## [1] -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 1.0
## optim L-BFGS-B
## $par
## [1] 1 1 1 1 1 1 1 1
##
## $value
## [1] 1.537767e-13
##
## $counts
## function gradient
## 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## lbfgsb3c
## $par
## [1] 1 1 1 1 1 1 1 1
##
## $grad
## [1] -8.65458e-07 6.26284e-07 -8.65458e-07 6.26284e-07 -8.65458e-07
## [6] 6.26284e-07 -8.65458e-07 6.26284e-07
##
## $value
## [1] 1.537766e-13
##
## $counts
## [1] 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
##
## ex_rosen try for n= 10
## [1] -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 1.0
## optim L-BFGS-B
## $par
## [1] 1 1 1 1 1 1 1 1 1 1
##
## $value
## [1] 1.922208e-13
##
## $counts
## function gradient
## 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## lbfgsb3c
## $par
## [1] 1 1 1 1 1 1 1 1 1 1
##
## $grad
## [1] -8.654582e-07 6.262840e-07 -8.654582e-07 6.262840e-07 -8.654582e-07
## [6] 6.262840e-07 -8.654582e-07 6.262840e-07 -8.654582e-07 6.262840e-07
##
## $value
## [1] 1.922207e-13
##
## $counts
## [1] 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
##
## ex_rosen try for n= 12
## [1] -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 1.0
## optim L-BFGS-B
## $par
## [1] 1 1 1 1 1 1 1 1 1 1 1 1
##
## $value
## [1] 2.306652e-13
##
## $counts
## function gradient
## 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## lbfgsb3c
## $par
## [1] 1 1 1 1 1 1 1 1 1 1 1 1
##
## $grad
## [1] -8.654581e-07 6.262840e-07 -8.654581e-07 6.262840e-07 -8.654581e-07
## [6] 6.262840e-07 -8.654581e-07 6.262840e-07 -8.654581e-07 6.262840e-07
## [11] -8.654581e-07 6.262840e-07
##
## $value
## [1] 2.306649e-13
##
## $counts
## [1] 51 51
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH"
While you may use the same interface as described in the writing R extensions to interface compiled code with this function, see L-BFGS-B, it is sometimes more convenient to use your own compiled code.
The following example shows how this is done using the file jrosen.f
. We have unfortunately found that compilation is not always portable across systems, so this example is presented without execution.
subroutine rosen(n, x, fval)
double precision x(n), fval, dx
integer n, i
fval = 0.0D0
do 10 i=1,(n-1)
dx = x(i + 1) - x(i) * x(i)
fval = fval + 100.0 * dx * dx
dx = 1.0 - x(i)
fval = fval + dx * dx
10 continue
return
end
Here is the example script. Note that we must have the file jrosen.f
available. Because the executable files on different systems use different conventions and structures, we have turned evaluation off here so this vignette can be built on multiple platforms. However, we wished to provide examples of how compiled code could be used.
system("R CMD SHLIB jrosen.f")
dyn.load("jrosen.so")
is.loaded("rosen")
as.double(c(-1.2,1))
x0 <- as.double(-999)
fv <- as.double(2)
n <- .Fortran("rosen", n=as.integer(n), x=as.double(x0), fval=as.double(fv))
testf <-
testf
function(x) {
rrosen <- 0.0
fval <-for (i in 1:(n-1)) {
x[i + 1] - x[i] * x[i]
dx <- fval + 100.0 * dx * dx
fval <- 1.0 - x[i]
dx <- fval + dx * dx
fval <-
}
fval
}
rrosen(x0))
(
function(x){
frosen <- length(x)
nn <-if (nn > 100) { stop("max number of parameters is 100")}
-999.0
fv <- .Fortran("rosen", n=as.integer(nn), x=as.double(x), fval=as.double(fv))
val <-$fval # NOTE--need ONLY function value returned
val
}# Test the funcion
frosen(x0)
tval <-str(tval)
cat("Run with Nelder-Mead using R function\n")
optim(x0, rrosen, control=list(trace=0))
mynm <-print(mynm)
cat("\n\n Run with Nelder-Mead using Fortran function")
optim(x0, frosen, control=list(trace=0))
mynmf <-print(mynmf)
library(lbfgsb3c)
library(microbenchmark)
cat("try lbfgsb3c, no Gradient \n")
cat("R function\n")
microbenchmark(myopR <- lbfgsb3c(x0, rrosen, gr=NULL, control=list(trace=0)))
tlR<-print(tlR)
print(myopR)
cat("Fortran function\n")
microbenchmark(myop <- lbfgsb3c(x0, frosen, gr=NULL, control=list(trace=0)))
tlF<-print(tlF)
print(myop)
In this example, Fortran execution was actually SLOWER than plain R on the system where it was run.
Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995a. “A Limited Memory Algorithm for Bound Constrained Optimization.” SIAM J. Sci. Comput. 16 (5): 1190–1208. https://doi.org/10.1137/0916069.
Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ci You Zhu. 1995b. “A Limited Memory Algorithm for Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16 (5): 1190–1208.
Coppola, Antonio, Brandon Stewart, and Naoaki Okazaki. 2014. Lbfgs: Limited-Memory Bfgs Optimization. https://CRAN.R-project.org/package=lbfgs.
Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. New York: Springer. https://doi.org/10.1007/978-1-4614-6868-4.
Eddelbuettel, Dirk, and James Joseph Balamuta. 2017. “Extending extitR with extitC++: A Brief Introduction to extitRcpp.” PeerJ Preprints 5 (August): e3188v1. https://doi.org/10.7287/peerj.preprints.3188v1.
Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.
Fidler, Matthew L, John C Nash, Ciyou Zhu, Richard Byrd, Jorge Nocedal, and Jose Luis Morales. 2018. lbfgsb3c: Limited Memory Bfgs Minimizer with Bounds on Parameters with Optim() ’c’ Interface. https://CRAN.R-project.org/package=lbfgsb3c.
Liu, Dong C., and Jorge Nocedal. 1989. “On the Limited Memory BFGS Method for Large Scale Optimization.” Math. Program. 45 (1-3): 503–28. https://doi.org/10.1007/BF01589116.
Lu, Peihuang, Jorge Nocedal, Ciyou Zhu, and Richard H. Byrd. 1994. “A Limited-Memory Algorithm for Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16: 1190–1208.
Morales, José Luis, and Jorge Nocedal. 2011. “Remark on Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization.” ACM Trans. Math. Softw. 38 (1): 7:1–7:4. https://doi.acm.org/10.1145/2049662.2049669.
Nash, John C, Ciyou Zhu, Richard Byrd, Jorge Nocedal, and Jose Luis Morales. 2015. lbfgsb3: Limited Memory Bfgs Minimizer with Bounds on Parameters. https://CRAN.R-project.org/package=lbfgsb3.
Zhu, Ciyou, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization.” ACM Trans. Math. Softw. 23 (4): 550–60. https://doi.org/10.1145/279232.279236.