flowchart
is a package for drawing participant flow
diagrams directly from a dataframe using tidyverse. It provides a set of
functions that can be combined with |>
to create all
kinds of flowcharts from a dataframe in an easy way:
as_fc()
transforms a dataframe into a
fc
object that can be manipulated by the package.
fc_split()
splits a flowchart according to the
different values of a column in the dataframe.
fc_filter()
creates a filtered box from the
flowchart, based on the evaluation of an expression in the
dataframe.
fc_merge()
combines horizontally two different
flowcharts.
fc_stack()
combines vertically two different
flowcharts.
fc_modify()
allows to modify the parameters of the
flowchart which are stored in .$fc
.
fc_draw()
draws the flowchart created by the
previous functions.
fc_export()
allows to export the flowchart drawn to
the desired format.
We can install the stable version in CRAN:
Or the development version from GitHub:
We will use the built-in dataset safo
, which is a
randomly generated dataset from the SAFO trial1. SAFO is an
open-label, multicentre, phase III–IV superiority randomised clinical
trial designed to assess whether cloxacillin plus fosfomycin
administered during the first 7 days of therapy achieves better
treatment outcomes than cloxacillin alone in hospitalised patients with
meticillin-sensitive Staphylococcus aureus bacteraemia.
## # A tibble: 6 × 21
## id inclusion_crit exclusion_crit chronic_heart_failure expected_death_24h
## <int> <fct> <fct> <fct> <fct>
## 1 1 Yes No No No
## 2 2 No No No No
## 3 3 No No No No
## 4 4 No Yes No No
## 5 5 No No No No
## 6 6 No Yes No No
## # ℹ 16 more variables: polymicrobial_bacteremia <fct>,
## # conditions_affect_adhrence <fct>, susp_prosthetic_valve_endocard <fct>,
## # severe_liver_cirrhosis <fct>, acute_sars_cov2 <fct>,
## # blactam_fosfomycin_hypersens <fct>, other_clinical_trial <fct>,
## # pregnancy_or_breastfeeding <fct>, previous_participation <fct>,
## # myasthenia_gravis <fct>, decline_part <fct>, group <fct>, itt <fct>,
## # reason_itt <fct>, pp <fct>, reason_pp <fct>
The first step is to initialise the flowchart with
as_fc
. The last step, if we want to visualise the created
flowchart, is to draw the flowchart with fc_draw
. In
between we can combine the functions fc_split
.,
fc_filter
, fc_merge
, fc_stack
with the operator pipe (|>
or %>$
) to
create complex flowchart structures.
To initialize a flowchart from a dataset we have to use the
as_fc()
function:
## List of 2
## $ data: tibble [925 × 21] (S3: tbl_df/tbl/data.frame)
## $ fc : tibble [1 × 14] (S3: tbl_df/tbl/data.frame)
## - attr(*, "class")= chr "fc"
The safo_fc
object created is a fc
object,
which consists of a list containing the tibble of the dataframe
associated with the flowchart and the tibble that stores the flowchart
parameters. In this example, safo_fc$data
corresponds to
the safo
dataset while safo_fc$fc
contains the
parameters of the initial flowchart:
## # A tibble: 1 × 14
## id x y n N perc text type group just text_color text_fs
## <dbl> <dbl> <dbl> <int> <int> <chr> <chr> <chr> <lgl> <chr> <chr> <dbl>
## 1 1 0.5 0.5 925 925 100 "Ini… init NA cent… black 8
## # ℹ 2 more variables: bg_fill <chr>, border_color <chr>
Alternatively, if a dataframe is not available, we can initialize a
flowchart using the N =
argument manually specifying the
number of rows:
The function fc_draw()
allows to draw the flowchart
associated to any fc
object. Following the last example, we
can draw the initial flowchart that has been previously created:
We can filter the flowchart using fc_filter()
specifying
the logic in which the filter is to be applied. For example, we can show
the number of patients that were randomized in the study:
safo |>
as_fc(label = "Patients assessed for eligibility") |>
fc_filter(!is.na(group), label = "Randomized", show_exc = TRUE) |>
fc_draw()
Percentages are calculated from the box in the previous level. See
‘Modify function arguments’ for more information on the
label=
and show_exc=
arguments.
Alternatively, if the column to filter is not available, we can use
the N =
argument to manually specify the number of rows of
the resulting filter:
We can split the flowchart into groups using fc_split()
specifying the grouping variable. The function will split the flowchart
into as many categories as the specified variable has. For example, we
can split the previous flowchart showing the patients allocated in the
two study treatments:
safo |>
dplyr::filter(!is.na(group)) |>
as_fc(label = "Randomized patients") |>
fc_split(group) |>
fc_draw()
Percentages are calculated from the box in the previous level.
Alternatively, if the column to split is not available, we can use
the N =
argument to manually specify the number of rows in
each group of the resulting split:
We can customize the flowchart either with the arguments provided by
each function in the process of creating it, or directly in the final
output using the function modify_fc
.
Arguments common to as_fc()
, fc_filter()
and fc_split()
, to customise the appearance of the boxes
created at each step:
Argument | Description |
---|---|
N=
|
manually specify the numbers to display in the boxes. |
label=
|
modify the label. |
text_pattern=
|
modify the pattern of the text. |
just=
|
modify the justification for the text. |
text_color=
|
modify the color of the text. |
text_fs=
|
modify the font size of the text. |
bg_fill=
|
modify the background color of the box. |
border_color=
|
modify the border color of the box. |
as_fc()
arguments:
Argument | Description |
---|---|
hide=
|
hide the first initial box created by this function. |
fc_filter()
arguments:
Argument | Description |
---|---|
sel_group=
|
apply the filter only in the specified groups (if data is grouped). |
round_digits=
|
modify the number of digits to round percentages. |
show_exc=
|
show the box with the excluded rows that do not match the filter. |
direction_exc=
|
change the direction of the exclusion box (left or right). |
label_exc=
|
modify the label of the exclusion box. |
text_pattern_exc=
|
modify the pattern of the exclusion box. |
just_exc=
|
modify the justification for the text of the exclusion box. |
text_color_exc=
|
modify the color of the text in the exclusion box. |
text_fs_exc=
|
modify the font size of the text in the exclusion box. |
bg_fill_exc=
|
modify the background color of the exclusion box. |
border_color_exc=
|
modify the border color of the exclusion box. |
fc_split()
arguments:
Argument | Description |
---|---|
sel_group=
|
split the flowchart only in the specified groups (if data is grouped). |
na.rm=
|
omit the missing values in the grouping variable. |
show_zero=
|
omit the levels of the grouping variable that don’t have data. |
round_digits=
|
modify the number of digits to round percentages. |
fc_draw()
arguments are heredited from
arrow
:
Argument | Description |
---|---|
arrow_angle=
|
angle of the arrow head in degrees. |
arrow_length=
|
unit specifying the length of the arrow head. |
arrow_ends=
|
specify the ends of the line to draw the arrow head (last/first/both). |
arrow_type=
|
whether the arrow head should be a closed triangle. |
The function modify_fc
allows the user to customise the
created flowchart by modifying its parameters, which are stored in
.$fc
.
For example, we could fully customise the text in the exclusion box if we wanted to specify the different reasons for exclusion:
safo_fc <- safo |>
as_fc(label = "Patients assessed for eligibility") |>
fc_filter(!is.na(group), label = "Randomized", show_exc = TRUE) |>
fc_modify(
~ . |>
mutate(
text = ifelse(id == 3, str_glue("- {sum(safo$inclusion_crit == 'Yes')} not met the inclusion criteria\n- {sum(safo$exclusion_crit == 'Yes')} met the exclusion criteria"), text)
)
)
safo_fc |>
fc_draw()
We could also use fc_modify()
to change the default
x and the y coordinates:
fc_merge()
and fc_stack()
allow you to
combine different flowcharts horizontally or vertically. This is very
useful when you need to combine flowcharts generated from different
dataframes, as shown here.
We can combine different flowcharts horizontally using
fc_merge()
. For example, we might want to represent the
flow of patients included in the ITT population with the flow of
patients included in the PP population.
# Create first flowchart for ITT
fc1 <- safo |>
as_fc(label = "Patients assessed for eligibility") |>
fc_filter(itt == "Yes", label = "Intention to treat (ITT)")
fc_draw(fc1)
Once the flowchart has been drawn we can export it to the most
popular image formats (png, jpeg, tiff, bmp) using
fc_export()
:
safo |>
as_fc(label = "Patients assessed for eligibility") |>
fc_filter(!is.na(group), label = "Randomized", show_exc = TRUE) |>
fc_draw() |>
fc_export("flowchart.png")
We can change the size and resolution of the stored image.
In this example, we will try to create a flowchart for the complete flow of patients in the SAFO study:
In this example, we will try to exactly reproduce the original flowchart of the SAFO study published in Nature Medicine: SAFO flowchart.
First, we need to do some pre-processing to reproduce the text in the larger boxes:
# Create labels for exclusion box:
label_exc <- paste(
c(str_glue("{sum(safo$inclusion_crit == 'Yes' | safo$exclusion_crit == 'Yes' | safo$decline_part == 'Yes', na.rm = T)} excluded:"),
map_chr(c("inclusion_crit", "decline_part", "exclusion_crit"), ~str_glue("{sum(safo[[.x]] == 'Yes', na.rm = TRUE)} {attr(safo[[.x]], 'label')}")),
map_chr(4:15, ~str_glue(" - {sum(safo[[.x]] == 'Yes')} {attr(safo[[.x]], 'label')}"))),
collapse = "\n")
label_exc <- gsub("exclusion criteria", "exclusion criteria:", label_exc)
safo1 <- safo |>
filter(group == "cloxacillin alone", !is.na(reason_pp)) |>
mutate(reason_pp = droplevels(reason_pp))
label_exc1 <- paste(
c(str_glue("{nrow(safo1)} excluded:"),
map_chr(levels(safo1$reason_pp), ~str_glue(" - {sum(safo1$reason_pp == .x)} {.x}"))),
collapse = "\n")
label_exc1 <- str_replace_all(label_exc1, c("resistant" = "resistant\n", "blood" = "blood\n"))
safo2 <- safo |>
filter(group == "cloxacillin plus fosfomycin", !is.na(reason_pp)) |>
mutate(reason_pp = droplevels(reason_pp))
label_exc2 <- paste(
c(str_glue("{nrow(safo2)} excluded:"),
map_chr(levels(safo2$reason_pp), ~str_glue(" - {sum(safo2$reason_pp == .x)} {.x}"))),
collapse = "\n")
label_exc2 <- str_replace_all(label_exc2, c("nosocomial" = "nosocomial\n", "treatment" = "treatment\n"))
Second, let’s create and customise the flowchart using the functions in the package:
safo |>
as_fc(label = "patients assessed for eligibility", text_pattern = "{n} {label}") |>
fc_filter(!is.na(group), label = "randomized", text_pattern = "{n} {label}", show_exc = TRUE,
just_exc = "left", text_pattern_exc = "{label}", label_exc = label_exc, text_fs_exc = 7) |>
fc_split(group, text_pattern = "{n} asssigned\n {label}") |>
fc_filter(itt == "Yes", label = "included in intention-to-treat\n population", show_exc = TRUE,
text_pattern = "{n} {label}",
label_exc = "patient did not receive allocated\n treatment (withdrew consent)",
text_pattern_exc = "{n} {label}", text_fs_exc = 7) |>
fc_filter(pp == "Yes", label = "included in per-protocol\n population", show_exc = TRUE,
just_exc = "left", text_pattern = "{n} {label}", text_fs_exc = 7) |>
fc_modify(
~.x |>
filter(n != 0) |>
mutate(
text = case_when(id == 11 ~ label_exc1, id == 13 ~ label_exc2, TRUE ~ text),
x = case_when(id == 3 ~ x + 0.15, id %in% c(11, 13) ~ x + 0.01, TRUE ~ x),
y = case_when(id %in% c(1, 3) ~ y + 0.05, id >= 2 ~ y - 0.05, TRUE ~ y)
)
) |>
fc_draw()
In this example, we will create a flowchart without any dataframe,
using the N =
argument to manually specify the numbers to
display in the boxes:
Grillo, S., Pujol, M., Miró, J.M. et al. Cloxacillin plus fosfomycin versus cloxacillin alone for methicillin-susceptible Staphylococcus aureus bacteremia: a randomized trial. Nat Med 29, 2518–2525 (2023). https://doi.org/10.1038/s41591-023-02569-0↩︎