## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- fig.show='hold', fig.width = 6, fig.cap = 'Time series of one-day ahead HRES Precipitation forecasts (crosses) and respective observations (solid line) over London.'---- library(PointFore) library(ggplot2) library(lubridate) precipitation$Date <- as.Date(row.names(precipitation),format = "%d-%m-%Y") ggplot(subset(precipitation, month(Date)< 7 & year(Date)==2013))+ geom_line(aes(x=Date,y=Y))+ geom_point(aes(x=Date,y=X), color = 'red', size = 2, shape=4) ## ---- fig.show='hold', fig.cap = 'Constant expectile analysis.'---------- instruments <- c("lag(lag(Y))","X") res <- estimate.functional(iden.fct = expectiles, model = constant, instruments = instruments, Y = precipitation$Y, X=precipitation$X) summary(res) plot(res,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'linear probit model.'------------------ probit0 <- function(stateVariable,theta) probit_linear(stateVariable, theta)*(stateVariable>0) res <- estimate.functional(iden.fct = expectiles , model = probit0, theta0 = c(0,0), instruments = instruments, state = precipitation$X, Y = precipitation$Y, X=precipitation$X) summary(res) ## ---- fig.show='hold', fig.cap = 'Plot linear probit model.'------------- plot(res,limits = c(0.001,15),hline = TRUE)+ geom_point(data=data.frame(x=c(0,0),y=c(0,.395),shape=c(1,2)), aes(x=x,y=y,shape=as.factor(shape)), ,size=3,show.legend = FALSE)+ scale_shape_manual(values=c(16,1))