CondCopulas: Estimation and Inference for Conditional Copula Models

Provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), and test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>).

Version: 0.1.3
Imports: VineCopula, pbapply, glmnet, ordinalNet, tree, nnet, data.tree, statmod, wdm
Suggests: MASS, knitr, rmarkdown, ggplot2, mvtnorm
Published: 2023-09-26
DOI: 10.32614/CRAN.package.CondCopulas
Author: Alexis Derumigny ORCID iD [aut, cre], Jean-David Fermanian ORCID iD [ctb, ths], Aleksey Min ORCID iD [ctb], Rutger van der Spek [ctb]
Maintainer: Alexis Derumigny <a.f.f.derumigny at>
License: GPL-3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: CondCopulas results


Reference manual: CondCopulas.pdf
Vignettes: Simulation and estimation from conditional copula models


Package source: CondCopulas_0.1.3.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): CondCopulas_0.1.3.tgz, r-oldrel (arm64): CondCopulas_0.1.3.tgz, r-release (x86_64): CondCopulas_0.1.3.tgz, r-oldrel (x86_64): CondCopulas_0.1.3.tgz
Old sources: CondCopulas archive


Please use the canonical form to link to this page.