BClustLonG: A Dirichlet Process Mixture Model for Clustering Longitudinal Gene Expression Data

Many clustering methods have been proposed, but most of them cannot work for longitudinal gene expression data. 'BClustLonG' is a package that allows us to perform clustering analysis for longitudinal gene expression data. It adopts a linear-mixed effects framework to model the trajectory of genes over time, while clustering is jointly conducted based on the regression coefficients obtained from all genes. To account for the correlations among genes and alleviate the high dimensionality challenges, factor analysis models are adopted for the regression coefficients. The Dirichlet process prior distribution is utilized for the means of the regression coefficients to induce clustering. This package allows users to specify which variables to use for clustering (intercepts or slopes or both) and whether a factor analysis model is desired. More details about this method can be found in Jiehuan Sun, et al. (2017) <doi:10.1002/sim.7374>.

Version: 0.1.3
Depends: R (≥ 3.4.0), MASS (≥ 7.3-47), lme4 (≥ 1.1-13), mcclust (≥ 1.0)
Imports: Rcpp (≥ 0.12.7)
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, lattice
Published: 2020-05-07
DOI: 10.32614/CRAN.package.BClustLonG
Author: Jiehuan Sun [aut, cre], Jose D. Herazo-Maya[aut], Naftali Kaminski[aut], Hongyu Zhao [aut], and Joshua L. Warren [aut],
Maintainer: Jiehuan Sun <jiehuan.sun at gmail.com>
License: GPL-2
NeedsCompilation: yes
In views: Omics
CRAN checks: BClustLonG results


Reference manual: BClustLonG.pdf
Vignettes: BClustLonG


Package source: BClustLonG_0.1.3.tar.gz
Windows binaries: r-devel: BClustLonG_0.1.3.zip, r-release: BClustLonG_0.1.3.zip, r-oldrel: BClustLonG_0.1.3.zip
macOS binaries: r-release (arm64): BClustLonG_0.1.3.tgz, r-oldrel (arm64): BClustLonG_0.1.3.tgz, r-release (x86_64): BClustLonG_0.1.3.tgz, r-oldrel (x86_64): BClustLonG_0.1.3.tgz
Old sources: BClustLonG archive


Please use the canonical form https://CRAN.R-project.org/package=BClustLonG to link to this page.